JOURNAL OF COMPUTATIONAL PHYSICS 105, 83-91 (1993)

Implicit Solvers for Unstructured Meshes

V. VENKATAKRISHNAN*

Computer Sciences Corporation, M.S. T0435-1. NAS Applied Research Branch, NASA Ames Research Center, Moffett Field, California 940435

AND

DiviTrr J. MavripLis!

Instirute for Compurter Applications in Science and Engineering, NASA Lungley Research Center, Hompion, Virginia 236653

Received August 16, 1991; revised June 29, 1992

Implicit methods are developed and tested for unstructured mesh
computations. The methods are used to solve the compressible
Navier—Stokes equations to steady state. The approximate system
which arises from the Newton linearization of the nonlinear evolution
operator is sofved by using the preconditioned GMRES (generalized
minimum residual) technique. Three different preconditioners, namely,
the incomplete LU factorization {ILU}, block diagonal factorization,
and the symmetric successive over-relaxation (SSORY} are investigated.
The preconditioners have been optimized to have good vectarization
properties. SSOR and ILU themselves are studied as iterative schemes.
The various methods are comparet over a wide range of problems.
Ordering of the unknowns, which affects the convergence of these
sparseé matrix iterative methods, is also investigated. Resufts are
presented for inviscid and turbulent viscous calculations on single and
multi-element airfoil configurations using globally and adaptively
generated meshes. € 1993 academic Press, Inc.

INTRODUCTION

Empressive progress has been made in the area of algo-
rithms for unstructured meshes in the last few yvears. Much
attention has been focussed on improving the spatial dis-
cretization operator [1-3] which has evolved to a very high
degree of sophistication. Usually explicit methods, such as
Runge-Kutta schemes, have been used to march the solu-
tion to steady state. Some acceleration techniques such as
local time stepping and residual averaging have also been
implemented in this context. However, [or large problems,
as well as stiff turbulent flow problems, the convergence
rates of such methods degrade rapidly, resulting in
inefficient solution techniques. In order to speed up

* The author’s work was supported by NAS Contract NAS 2-12961.

" The author’'s work was partially supported under the National
Aeronautics and Space Administration under NASA Contract NASI-
18605 while he was in residence at ICASE.

83

convergence and propagate information more rapidly
throughout the domain, more sophisticated multigrid or
implicit methods are required.

The unstructured multigrid algorithm of Mavriplis {4]
has been shown to produce efficient steady-state solutions
for both the Euler and Navier—Stokes equations. In this
approach, convergence acceleration is achieved by time-
stepping on coarser unstructured meshes which may be
generated independently from the fine mesh on which the
equations are originally discretized. The principle behind
this algorithm is that the errors associated with the high
frequencies are annihilated by a carefully chosen smoother
(a multistage Runge-Kutta scheme) while the errors
associated with the low frequencies are annihilated on the
coarser grids where these frequencies manifest themselves as
high frequencies. The disadvantage of such an approach lies
in the fact that the acceleration is achieved through the use
of additional geometric constructions (i.e., user-generated
coarse meshes) which is often viewed as less desirable
than, for example, an algebraic multigrid approach. A fully
implicit method, wherein the system of linear equations
is solved by direct methods, was developed and tested
by Venkatakrishnan and Barth {5]. While providing a
robust solution technique, direct methods are plagued by
nonoptimal computational complexity and high storage
requirements, Furthermore, for nonlinear systems with
inexact linearizations, since the linear system of equations
which arises at each time step need not be solved to a high
degree of precision in order to maintain favorable overall
(nonlinear) convergence rates, iterative implicit solvers may
be employed.

[terative implicit methods for unstructured problems
have been investigated by Whitaker et al. [6], Hassan et al.
£77. Struijs et al. | 8, and Batina [9]. Venkatakrishnan [10]
has tested preconditioned iterative methods on structured
grid problems with special emphasis on vector performance

0021-9991/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

84 VENKATAKRISHNAN AND MAVRIPLIS

issues. He concluded that some of these methods are quite
competitive with other existing methods, while being réadiiy
applicable to unstructured grids. In this work some of the
ideas from [10] are extended to unstructured grids.

Spatial discretization is achieved using piecewise-linear
finite elements. For dissipative terms, a blend of Laplacian
and biharmonic terms is employed, the Laplacian term
acting in the vicinity of shocks. The use of this particular
discretization affords a relatively simple construction of the
lingar system, while enabling a straightforward comparison
of the implicit schemes with the previously developed
multigrid strategy. For turbulent flow calculations, the
unstructured mesh implementation of the Baldwin—Lomax
algebraic model developed in [11] is incorporated. This
model is not differentiable and is therefore treated explicitly
in the present scheme. The implicit methods investigated in
this work are not restricted to any scheme in particular
and in the future may be applied to more complex upwind
discretizations and more sophisticated multi-equation
turbulence models.

IMPLICIT SCHEME

In nondimensional conservative form, the full Navier—
Stokes equations read

a_wﬁﬁs_c__\[%(%g&))
ot dx dy Re, \éx oy}
where w represents the solution vector (conserved
variables), and f. and g. represent the Cartesian com-
ponents of the convective fluxes which are nonlinear func-
tions of the w varifables, and f, and g, are the Cartesian com-
ponents of the viscous fluxes, which are functions of both
the w variables and the first derivatives of the w vanables.
The variables are stored at the vertices of a triangular mesh
which is generated from a prescribed distribution of points
by Delaunay triangulation {4]. Details of the spatial dis-
cretization using a finite volume scheme and its relation to
a piecewise-linear finite element method may be found
in [4].

The discretization of the governing equations in space
leads to the system of ordinary differential equations,

ﬁ!%-ﬁ-R(W):O, (2}

where R represents the spatial discretization operator,
or the residual, which vanishes at steady state, and M
represents the mass matrix, which contains the information
relating the average value in a control volume to the values
at the vertices. Since only steady state solutions are of

interest in this study, the mass matrix can be replaced by
the identity matrix yielding

%+ R(w)}=0. (3)
If the time derivative is replaced by
dw w +1 __ w"
= “)

d - &
then an explicit scheme is obtained by evaluating R(w) at
time level # and an implicit scheme by evaluating R{w) at
level n+ 1. In the latter case, linearizing R about time level
#, one obtains

[R
L VN sw — _R.
(5t+8W) Wi=—R:

(3)
5Wi= (Wn+ [W")j.

Equation (5) represents a large nonsymmetric linear system
of equations for the updates of the vector of unknowns and
needs to be solved at each time step. As ér tends to infinity,
the method reduces to the standard Newton’s method. The
term dR/OW symbolically represents the implicit side upon
linearization and involves the Jacobian matrices of the flux
vectors with respect to the conservative variables. The
discretized convective fluxes are linearized exactly on the
left-hand side of the equation. Only a first-order accurate
representation of the artificial dissipation terms is employed
in the linearization on the left-hand side, due to storage con-
siderations. This results in the graph of the sparse matrix
dR/OW being identical to the graph of the supporting un-
structured mesh (i.e., every vertex in the matrix is connected
only to its nearest neighbors). The sparse matrix thus has a
symmetric structure, even though the matrix itself is not
symmetric. Linearization of the complete biharmonic dis-
sipative terms would result in a much denser matrix with a
different graph, since each vertex would aiso be connected
to its second to nearest neighbors. The storage requirements
for the respresentation of such a matrix become prohibitive.
The penalty in making this approximation in the lineariza-
tion is that Eq. {5) can never approach Newton's method
{with its associated quadratic convergence property), due to
the mismatch of the right- and left-hand side operators.
The viscous fluxes are linearized with a few approximations.
First, the laminar viscosities, which are computed using
Sutherland’s law, are not lingarized and, in the energy
equation, the average quantities at the cell centers are
approximated as well. The validity of these approximations
has been established by solving a very low Reynolds number
laminar flow at very high CFL numbers (nondimen-
sionalized time steps). Second, the algebraic turbulence

IMPLICIT SQLVERS FOR UNSTRUCTURED MESHES 85

model, being nondifferentiable is not lincarized and is
treated explicitly. A numerical Jacobian evaluation is
possible but is expensive. If a field eguation furbulence
model were used, it should be possible to treat the tur-
bulence model implicitly.

Since the linear system is itself approximate there is little
to be gained by solving it to great precision. To obtain
favorable overall (nonlinear) convergence, it has been found
that it is better to solve the linear problem to a moderate
degree of precision and proceed to the next time step.
However, for stiff problems it may well be necessary to solve
the linear problem well and one has the control te do so in
the present framework. The time step in Eq. (5) is taken to
be inversely proportional to the L, norm of the residual.
Since there is a mismatch of operators in Eq.{5), it is
necessary to limit the maximum time step.

The system of linear equations is solved in the present
work by the GMRES technique developed by Saad and
Schuitz [12]. There is a host of iterative methods for solving
nonsymmetric linear systems. Each of these methods has its
own advantages but in the present context we shall employ
Just one: GMRES. Venkatakrishnan [10] compared the
Chebyshev semi-iteration technique to GMRES for struc-
tured CFD problems and found GMRES to be marginally
better. Moreover, the choice of a particular iterative techni-
que is not as important as that of a good preconditioner;
and the better the preconditioner, the more computa-
tionally intensive it is, diminishing the relative importance
of the iterative method. Without a good preconditioner,
most of these iterative methods fail to converge for the kind
of stiff problems which arise in computational fluid
dynamics.

The GMRES technique is quite efficient {or solving sparse
nonsymmetric linear systems and is outlined below. Let x,
be an approximate solution of the system

Ax+B=0; (6)

where 4 is an invertible matrix. The solution is advanced
from x, to x, as

X=X+ Vi.
GMRES(k} finds the best possible solution for y, over the
Krylov subspace ¢v,, Av,, A%, .., A*~'p, > by solving the
minimization problem
74 [l = min lo, + Ay

v, =Ax,+ B, r,=Ax,+ 8.

GMRES procedure forms an orthogonal basis vy, t,, ..., by
(termed search directions) spanning the Krylov subspace by

a modified Gram-Schmidt method. Storage is required to
store these search directions. As k increases, the storage
increases linearly and the number of operations, guadrati-
cailly. To mitigate this, Saad and Schultz also describe
GMRES (&, m) which is a restarted GMRES (k), where the
k search directions are discarded and recomputed every m
cycles. GMRES can alse be thought of as an optimal
polynomial acceleration scheme. Preconditioning greatly
improves the performance of GMRES, as well as the other
related iterative methods. It decreases the size of the
spectrum so that the optimal polynomial generated by
GMRES can better annihilate the errors associated with
cach eigenvalue.

PRECONDITIONING

Instead of Eq. (6) the preconditioned iterative methods
solve the following systems:

PAx + PB=0 (7)
AQQ~'x)+ B=0. (8)

The systerns of linear equations in Eq. {7) and Eq. (8) are
referred to respectively as, left-preconditioned and right-
preconditioned systems and P and Q as left and right pre-
conditioners. The role of the preconditioner is to cluster the
cigenvalues around unity. For reasons given in [10] only
right preconditioning is employed. Three preconditioners
have been examined, namely the incompiete LU factoriza-
tion, SSOR, and block diagonal. The preconditioners and
the optimizations done to extract the best vector perfor-
mances out of them are described below.

A simple choice is a block diagonal preconditioner which
computes the inverse of the 4 x 4 diagonal block associated
with a grid point. Good vectorization when using this pre-
conditioner 15 easy to achieve by unrolling the LU decom-
position of the 4 x 4 diagonal matrix, as well as the forward
and back solvers over all the grid points. A family of pre-
conditioners arises out of an incomplete LU factorization
and is referred to as ILU(#n). Here n represents the level of
fill-in; # =0 implies no fill-in beyond the original nonzero
pattern. In the present work ILU(0) is used since it is quite
robust and has lower storage requirements. It is also
possible to cast the symmetric successive overrelaxation
{(SSOR) as a preconditioner as has been shown by Saad
[14]. Saad recommends setting the relaxation factor to 1
when using SSOR as preconditioner. In this case the SSOR
preconditioner looks exactly like the ILU preconditioner,
except that the lower and the upper factors are read off
directly from the matrix A rather than by an incomplete
factorization. The incomplete factorization is a non-
vectorizable procedure (although parallelizable by using

|
86 VENKATAKRISHNAN AND MAVRIPLIS

wavefront ordering described below) and SSOR precondi-
tioning dispenses with this sequential procedure. ILT fac-
torization and SSOR as iterative techniques by themselves
are also tested for solving the linear system at each time step.

DATA STRUCTURES

In this section the data structures and kernels employed
are described. These are critical in reducing memory
requitements and obtaiming good performance. In the
course of the GMRES method with preconditioning, as per
Eq. (8), two kernels need to be addressed.

The first kernel is a sparse matrix-dense vector multi-
plication to compute Ax. The most commoenly used data
structures [157] are not ideal for this purpose since they
have poor vectorization properties. The ITPACK data
structure, which allocates storage based on the maximum
number of nonzeros in a row, is inefficient for sparse
matrices arising from unstructured grids, because the degree
of a vertex is arbitrary. The data structure that is used for
storing the sparse matrix A4 is most easily explained by inter-
preting the underlying triangular mesh as an undirected
graph. Associated with each edge are the two vertices, say
n1 and =2, which are incident to the edge. The spatial dis-
cretization operator (the right-hand side) utilizes this data
structure and, therefore, this information is already
available. The two 4 x4 matrices which contain the
influence of #2 on »r1 (entry in block row u#1 and block
column #2 in A) and the influence of n! on »#2 are stored.
The diagonal blocks are stored separately. With such a data
structure, a matrix vector multiplication can be carried out
efficiently by employing a coloring algorithm to color the
edges of the original mesh to obtain vector performance. It
is important to note that the data structure deals with
blocks of 4 x 4 matrices; for a scalar matrix the above-men-
tioned data structure is roughly equivalent to the coor-
dinate storage scheme [15]. However, since the graph of the
sparse matrix is equivalent to that of the supporting
unstructured mesh, the matrix is known to have a
symmetric structure {although the matrix itself is not
symmetric). Hence, savings are achieved with respect to the
standard coordinate storage scheme by only storing the
coordinates of the upper half of the matrix.

The second kernel deals with the effect of the precondi-
tioner (on a vector. (2 is D~ for block diagonal precondi-
tioning and (LU} ! for ILU/SSOR preconditioning, where
the ™ indicates approximate factors. The block diagenal
case is straightforward in this aspect and was discussed
earlier. The ILU/SSOR preconditioners require repeated
solutions of sparse triangular systems. By using a level
scheduling (also known as wavefront ordering) [16, 17], it
is possible to obtain good vector performance. Under this
permutation of the matrix, unknowns within a wavefront

are eliminated simultaneously. The key step in this proce-
dure is an off-diagonal rectangular matrix—vector multi-
plication. This requires that I. and U be stered in a con-
venient form and a data structure similar to that for 4 is
chosen. In addition to the nonzero blocks and the block
column numbers which are provided by the factorization,
we store the block row numbers. With this additional infor-
mation, the data structure becomes similar to the edge-
based data structure employed for the 4 matrix, except that
we only store one block per edge. The off-diagonal matrix
vector multiplication can then be vectorized by interpreting
the rectangular matrix as a directed graph and coloring the
directed edges. The performances are further enhanced by
performing all the operations on blocks of size 4 x 4 since we
are dealing with coupled systems.

The memory requirements for the present algorithm are
linear in », the number of vertices. The implicit scheme
requires three arrays of size 7x 16n in addition to a few
integer arrays of size n. One of these arrays stores the
matrix A4 in the edge-based data structure, a second in a
row-oriented format which is suitable for the factorization,
and the third contains the T and the U factors. The factor
7 comes from having three times as many edges as vertices
{valid for all 2D triangular grids, neglecting boundary
effects); we store two blocks per edge plus the diagonal
matrix for all the vertices. The second array is reused for
storing the search directions in GMRES, permitting up to
27 search directions to be stored. Block diagonal precondi-
tioning dispenses with one of these arrays.

The ordering of unknowns has a bearing on the con-
vergence properties of many iterative methods. This 1s true
for iterative methods which involve a directional bias such
as the SSOR/ILU techniques. For structured meshes in
[10, 18] it was found that a column-major ordering which
minimized the bandwidth (the “most local” ordering)
vielded the best convergence rates. For unstructured meshes
we have settied on the reverse Cuthili-Mckee (RCM) order-
ing [157. This is a standard ordering used in sparse direct
methods to reduce fill-in, but it also appears to be the “most
local” ordering. Various orderings based on coordinates of
the wvertices (sorting the vertices by the x coordinates, y
coordinates, or some combination of x and y coordinates)
have also been tested in the present work. The RCM order-
ing gives marginally better convergence rates over a wide
range of problems. RCM is also more efficient in that it
creates fewer wavefronts, thus producing longer vectors.

To achieve good overall vector performance, careful
attention aiso needs to be paid to the assembly of the
matrix. In the present setup, the matrix assembly is
performed by looping over the edges as far as possible.
This is easily done for the inviscid fluxes and the first-order
dissipative terms, but it is quite involved for the full viscous
fluxes. We have found it expedient to assemble the matrix
for the viscous fluxes by looping over the triangles instead

IMPLICIT SOLVERS FOR UNSTRUCTURED MESHES 87

and coloring the triangles to achieve vectorization. The
Jacobians are derived analytically, but with some
approximations for the viscous terms as was discussed
carlier.

RESULTS AND DISCUSSION

The iterative method outlined above requires a few
parameters. The startup CFL number and the maximum
CFL number that can be used need 1o be specified. 1t is also
possible to freeze the factorization after a few time steps {(or

after a prescribed reduction in the residual) and increase the
efficiency of the code, since it eliminates the assembly and/or
the factorization of the matrix, This introduces an addi-
tional parameter. GMRES requires a few parameters. It
requires the maximum number of scarch directions k, the
number of restart cycles m, and a tolerance level which
specifies the desired order of reduction of the residual of the
linear subproblem. In all the probiems, the tolerance is set
to 107° The solution to the linear system is terminated
when the number of iterations exceeds the specified maxi-
mum whether or not the tolerance criterion is met.

(a)
‘ NN NSS4 7
~ S
NrAS S e e AT,
R A A '
A Wiy
SRR WA A
RN A
a2
Sggg%ﬁiéﬁﬁ#ﬁ*@"ﬂ)
ORI R
y#’ﬂ'ﬂ!ﬂ!ﬂﬂ'ﬂm‘i 8
AN SRS
COLIATA IV TR
A TR
b
() - S_TJRESHLU (b) - ﬁl\[fljRES.’[LU
——-. SS0OR ---- SSOR
—.— GMRES/SSOR -.— GMRES/DIAG
—-n. GMRESDIAG
- -2
< < .
os) = TN
9 9-1 X \‘-."\
7) = -
WY 20 40 60 80 100 109 50 100 150
CRAY YMP-1 SECS. CRAY YMP-1 SECS.
FIG. 1. (a) Mesh for computing inviscid flow over an NACAR012 FIG. 2. (a) Mesh for computing inviscid flow over a four-element

airfoil (number of vertices =4224). (b) Convergence histories of the
various implicit methods for inviscid flow over an NACA0012 aiifoil
(Mach=0.8, x=1.25°).

airfoil {number of wvertices = 10,395). (b) Convergence histories of the
various implicit methods for inviscid flow over the four-element airfoil
(Mach=0.2, x=5°}.

88 VENKATAKRISHNAN AND MAVRIPLIS

(@) (b) p—
2 » Lower Surface .
' — Compated Sohsion
g8 L
2 F
3

Pressure Coefficient
.40
T

0.80

(c) :

o Upper Surface

1
n Lower Surface
8 : (d) 10
. — GMRES/ILU
— Compitted Solutiea o g}gkﬁsﬂ)mc
. 10 3 T ssoR
<
5+
=1
-]
g <
[Er A
s a8
[+ 9 [
3] 2]
j45]
wy
3 (=4
a B
g
v
2k
3

10' t 1 T
g L J] 200 400 600
< R YMP1 SECS,
FIG. 3. (a) Mesh for computing transonic turbulent flow over an RAE2822 airfoil (number of vertices =13,751). (b} Computed surface pressure
distribution for transonic turbulent flow over an RAE2822 airfoil (Mach =0.729, 2= 2.31°, Re =6.5x 10%). (c) Computed skin friction distribution for

transonic turbulent flow over an RAE2822 airfoil (Mach =0.729, « = 2.31°, Re = 6.5 x 10%). (d).Convergence histories of the various implicit methods
for transonic turbulent flow over an RAE2822 airfoil {Mach = 0.729, x = 2.31°, Re = 6.5 x 10%).

The first case studied is a standard airfoil flow, namely The solution (not shown here) agrees with standard results.
inviscid flow over the ubiquitous NACAO0012 airfoil at a The computed lift, drag, and moment coeflicients are
freestream Mach number of 0.8 at 1.25° angle of attack. The 0.3523, 00226, and —0.0452, respectively. The convergence
unstructured grid contains 4224 vertices or 8192 triangles. histories of five different methods are shown in Fig. 1b as a
A closeup of the nearly uniform grid is shown in Fig la. function of CPU time. Since we are dealing with different

FI1G. 4. {a) Global view of the adaptively generated mesh for computing terbulent flow over a four-clement airfoi! {(number of vertices = 49,691),
{b) Closeup view of the leading edge of the adaptively generated mesh about the four-element airfoil. (c) Convergence history of the ILU-GMRES implicit
scheme and the effect of freezing the algebraic turbulence model for flow over the four-glement airfoil (Mach =0.1995, & = 16.02°, Re = 1.187 % 10%),
(d} Computed Mach comtours for turbulent flow over the four-element airfoil (Mach=0.1995, x =16.02°, Re = 1.187 x 10%). {e) Computed surface
pressure distribution and comparison with wind tunnel data for turbulent flow over the four-element airfoil (Mach = 0.1995, » = 16.02°, Re = 1.187 x 10°).

(a)

- NG FREEZING OF MODEL

—=- FROZEN MODEL

TVNAISTH

6000

4000

2000
CRAY YMP-1 SECS,

10

8 |
=
g8 83
SE3 el
@a D5
£ e g
53 m_w
[
i \le1‘|l..|F L L A
00Di- 008- 009- O0F- 002- (00 007
JUILDL}J30)) S1nssAlg
©
2

89

90 VENKATAKRISHNAN AND MAVRIPLIS

methods which require varying amounts of work at each
time step we believe that CPU time is the only true measure
for comparing them. Since there are quite a few parameters
involved in each of these methods, what we have shown 1s
the “best” convergence history obtained with each method.
GMRES with TLU preconditioning (GMRES/ILU) uses
five search directions, CFL 20-10° and freezes the factoriza-
tion after 30 time steps. GMRES/SSOR, wherein SSOR is
used as the preconditioner, employs 15 search directions,
CFL 20-10° and freczes the matrix after 30 time steps.
GMRES/DIAG, which uses block diagonal preconditioner,
employs 25 search directions with three restarts, CFL
10-500,000 and {reezes the preconditioner after 25 time
steps. The ILU iteration uses CFL [-50 and freezes the
matrix after 25 steps. Finally, the SSOR iteration uses CFL
1-25 and freezes the matrix after 30 time steps. Using
multiple “inner” subiterations with the ILU and the SSOR
iteration schemes in order to be able to use larger time
steps turns out be less efficient for this problem. The number
of time steps taken by GMRES/ILU, GMRES/SSOR,
GMRES/DIAG, ILU, and SSOR are 75, 100, 75, 700, and
700, respectively. The parameters given above for the hive
methods, we believe, are nearly optimal for this problem
and yield the best convergence history for each of the
methods. Having to choose many parameters is a major
drawback in using iterative methods to solve the
approximate linear systems arising from nonlinear
problems. However, we will be able to provide some
guidelines for choosing these parameters for the best of
these methods, namely GMRES/ILU, by solving a few
more representative problems. In Fig. 1b, we note that
GMRES/DIAG is quite slow even for this simple problem,
while ILU iteration appears to be quite good. SSOR
iteration and GMRES/SSOR have similar convergence
histories. SSOR as a preconditioner is not as effective as the
ILU preconditioner; GMRES/ILU appears to be the best of
all the methods. As we shall see, as the problems get bigger
and more stiff, GMRES/ILU performs much better than the
other four methods.

The next flow considered is inviscid subcritical flow over
a four-element airfoil at a freestream Mach number of 0.2
and angle of attack of 5°. The triangular mesh employed has
10,395 vertices. The grid is shown in Fig. 2a. The solution
is not shown here and may be found in Mavriplis [4].
In Fig.2b, we present the convergence histories of
GMRES/ILU, GMRES/DIAG, ILU, and S8O0R iteration.
GMRES/SSOR had great difficulties in the initial stages
and is not shown. GMRES/ILU converges much better
than the other methods. The parameters for GMRES/ILU
are 10 search directions and CFL 20-10%, the factorization
being frozen after 30 time steps. GMRES/DIAG employs 25
search directions with two restarts, CFL 10-5 x 10° and
freezes the preconditioner after 30 time steps. ILU iteration
uses CFL 1-30, freezes the matrix after 50 time steps and

does not use subiterations. SSOR iteration uses CFL 0.5-3
and freezes the matrix after 100 time steps. The number of
time steps taken by GMRES/ILU, GMRES/DIAG, ILU,
and SSOR are 100, 70, 400, and 400, respectively. SSOR,
either by itsell or as a preconditioner, is clearly unsatis-
factory.

The performances of the methods are compared on a
transonic turbulent flow over an RAE2822 airfoil, referred
to as Case 6. The flow conditions are M _, =0.729, 2 = 2.31°,
and Reynolds number 6.5 x 10° based on the chord. The
flow is computed on a mesh with 13,751 vertices which con-
tains cells in the boundary layer and the wake region with
aspects ratios up to 1000:1. The grid is shown in Fig. 3a.
The pressure plot and skin friction distribution and
experimental data [19] are shown in Figs. 3b and c. The lift,
drag, and moment coefficients are 0.7342, 0.0132, and
—0.0978. Figure 3d shows the convergence histories of the
vartous methods. Only GMRES/ILU and GMRES/DIAG
converge, the latter doing so much more slowly.
GMRES/SSOR diverges for any reasonable CFL numbers
at all and its convergence history is not shown. The
parameters for GMRES/ILU are 25 search directions and
CFL 5-25,000. The factorization is frozen after 80 time
steps. The turbulence meodel is also frozen after nearly six
orders of reduction in the residual; otherwise, the residual
hangs and the convergence of the method slows down. The
effect of freezing the turbulence model in this fashion has
minimal effect on the aerodynamic coefficients (less than
0.02% change in hift coefficicnt). The parameters for
GMRES/DIAG are the same as for GMRES/ILU. The
number of time steps taken by both GMRES/ILU and
GMRES/DIAG is 150. The unstructured multigrid algo-
rithm of Mavriplis [4] takes nearly 300 s on the YMP to
reduce the L, norm of the residual to 0.3 x10~* and
GMRES/ILU takes about 450 s to reach the same level
{seven orders of reduction in residual} for this problem. In
the full multigrid algorithm, the problem is first solved on
coarser grids, whereas GMRES/ILU starts from freestream
conditions on the fine grid. The [LU and SSOR iterations
use¢ 10 subiterations, CFL 0.5-2.5 and still do not converge
after 200 time steps.

The final case computed is turbulent flow over a four-
element airfoil computed on an adapted grid with 48,691
vertices. The grid and a closeup view near the leading
edge are shown in Figs.4a and b, The flow conditions
are M, =0.1995 «=1602° and Reynolds number of
1.187 x 10%. The convergence histories with and without
freezing the turbulence model are shown in Fig. 4c as a func-
tion of the CPU time. The number of time steps taken is 400.
The multigrid algorithm takes 2100 s to reduce the residual
to 1.79 x 10~* while GMRES/ILU takes about 20005 to
reach the same stage (five orders of reduction of the
residual). The computed Mach contours for this case are
shown in Fig. 4d, illustrating the complexity of this flow.

IMPLICIT SOLVERS FOR UNSTRUCTURED MESHES 91

In Fig. 4e the computed surface pressure distribution is
compared with experimental wind-tunnel data.

In summary, it has been found that for inviscid flows
5-10 search directions are usuaily sufficient, whereas the
turbulent viscous cases require 25 search directions with
GMRES/ILU. The start up CFL number is usually about
20 for inviscid problems and about 5 for turbulent viscous
cases and the CFL number is allowed to increase up to
500-30,000 fold. A non-restarted GMRES is used whenever
possible, which eliminates one of the parameters and is
better suited for stiff problems (see [127]). The GMRES/
TLU runs at about 90-120 MFlops on the CRAY Y-MP/1
{uniprocessor) at the NAS facility, with performance
improving as the problems get larger.

CONCLUSIONS

Five candidate implicit methods have been compared for
solving the compressible Navier-Stokes equations to steady
state on triangular meshes. For inviscid problems, with a
small number of vertices and low cell aspect ratios, many of
the methods work well, GMRES with ILU preconditioning
performing the best. For larger problems, especiaily at
high Reynolds numbers, almost all the methods except for
GMRES/ILU converge extremely siowly, if at all. Not
surprisingly, SSOR, either as an iteration or as a pre-
conditioner, suffers dramatically as the problem increases
in size or in the degree of complexity. GMRES/ILU is quite
competitive with the unstructured multigrid algorithm,
while eliminating the need for independent coarse grids to
be generated. ¥t does, however, incur a larger memory
overhead than the multigrid algorithm. Ewven though
these methods have been compared for a particular spatial
discretization, we believe the trends should hold for other
discretizations as well. A aumber of optimizations have
been carried out to extract the best vector performances out
of all these methods. Finally, the turbulence model itself
appears to inhibit convergence in the latter stages. This
needs further investigation and perhaps incorporating a

field equation model with proper linearization would solve
the problem.

ACKNOWLEDGMENTS

The authors thank T. J. Barth of NASA Ames Research Center for his
contribution in arriving at the edge-based data structure for sparse
matrices. The first author also thanks the NAS Applied Research branch at
NASA Ames Rescarch Center for supporting this project.

REFERENCES

1. A. Jameson, T. J. Baker, and N. P. Weatherill, ATAA Paper 86-0103,
January 1986 (unpublished).

2. B. Stoufflet, J. Periaux, F. Fezoui, and A. Dervieux, AIAA Paper
87-0560, January 1987 {unpublished).

3. T. & Barth and D. C. Jespersen, ATAA Paper §9-0366, January 1989
{unpublished}.

4. D.J. Mavriplis, 4744 1. 26 (7} 824 (1988).

5. V. Venkatakrishnan and T. J. Barth, AIAA Paper 89-0364, January
1989 (unpublished).

6. D. L. Whitaker, D. C. Slack, and R. W. Walters, ATAA 90-0967, Reno,
NV, January 1990 (unpublished).

7. O. Hassan, K. Morgan, and J. Peraire, AIAA Paper 90-0402, January
1990 {unpublished).

8. R. Struiys, P. Vankeirsblick, and H. Deconinck, ATAA 89-1959-CP,
Buffalo, 1989 (unpublished).

9. I. T. Batina, 4/44 J. 29 (11) 1836 (1991},
10. V. Venkatakrishnan, A7AA J. 29 {7) 1092 {1991).
11, D. J. Mavriplis, 4744 J. 29 (12) 2086 (1991).
12, Y. S8aad and M. H. Schultz, STAM J. Sci. Star. Comput, 7 (3) 856
(1986).
14. Y. Saad, Supercomputing 90, New York, November 1990 (unpublished).

15. I 8. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
Matrices, Oxford Science Publications (Clarendon Press, Oxford,
1986).

16. E. Anderson and Y. Saad, High Speed Comput. Vol. 1 (1} 73 (1989),
17. 1. H. Saltz, 814 M J. Sci. Stac. Comput, 11 (1), 123 (1990).
18. 1. S. Duff and G. A. Meurant, BIT 29, 635 (1989},

19. P.H, Cook, M. A. MacDanald, and M, C. P, Fitmin, AGARD AR-138
{1979).

